

Maturation as changing the base of exponential HG? Consonant clusters (and pronoun resolution)

- joint work with Klaas Seinhorst (University of Amsterdam) -

Tamás Biró

Yale University

RUMMIT @ MIT, April 26, 2014

Overview

Learning and Maturation

- Exponential Harmonic Grammar, or q-HG
- 3 Consonant cluster simplification in Dutch

Overview

Learning and Maturation

3 Consonant cluster simplification in Dutch

4 Summary

Learning:

- Knowledge acquired from surrounding linguistic data
- Source of cross-linguistic variation
- Features in the child's language shared by other adult languages

Maturation:

- Skills emerging due to general development
- Universal developmental paths
- Features in child's language not appearing in any adult language

Learning:

- Knowledge acquired from surrounding linguistic data
- Source of cross-linguistic variation
- Features in the child's language shared by other adult languages

Maturation:

- Skills emerging due to general development
- Universal developmental paths
- Features in child's language not appearing in any adult language

Learning from surrounding linguistic data:

- Features in the child's language shared by other adult languages
 - Child learning English produces "Italian-like" pro-drop
 - \rightarrow "Pro-drop" parameter not yet switched.
 - Child learning English deleting codas
 - \rightarrow *CODA markedness not yet demoted below FAITHFULNESS.

Maturation due to general development:

• Features in child's language not appearing in any adult language

- Long distance place agreement in consonant harmony?
- Erroneous pronoun resolution?

Learning from surrounding linguistic data:

- Features in the child's language shared by other adult languages
 - Child learning English produces "Italian-like" pro-drop
 - \rightarrow "Pro-drop" parameter not yet switched.
 - Child learning English deleting codas
 - \rightarrow *Coda markedness not yet demoted below FAITHFULNESS.

Maturation due to general development:

- Features in child's language not appearing in any adult language
 - Long distance place agreement in consonant harmony?
 - Erroneous pronoun resolution?

Modelling learning and modelling maturation: shouldn't they be different?

Learning from surrounding linguistic data:

- Setting parameters
- Re-ranking constraints

Maturation due to general development:

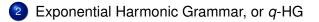
- Restrictions on working memory, speed of mental computation...
- Varying q in q-HG?

Modelling learning and modelling maturation: shouldn't they be different?

Learning from surrounding linguistic data:

- Setting parameters
- Re-ranking constraints

Maturation due to general development:


- Restrictions on working memory, speed of mental computation...
- Varying q in q-HG?

Overview

Learning and Maturation

• Optimality Theory minimizes a vector of violations:

$$H(\text{cand}) = \begin{array}{|c|c|c|c|c|c|c|c|} \hline C_n & C_{n-1} & \dots & C_i & \dots & C_1 \\ \hline r_n(=n) & r_{n-1} & & r_i & & r_1(=1) \\ \hline C_1(\text{cand}) & C_2(\text{cand}) & \dots & C_i(\text{cand}) & \dots & C_n(\text{cand}) \\ \hline \end{array}$$

• Harmonic Grammar minimizes a weighted sum of violations:

$$H(ext{cand}) = \sum_{i=1} w_i \cdot C_i(ext{cand})$$

Exponential HG: weights are ranks exponentiated, fixed base

$$W_i = e^{r_i}$$

$$W_i = q^{r_i}$$

• Optimality Theory minimizes a vector of violations:

$$H(\text{cand}) = \begin{array}{|c|c|c|c|c|c|} \hline C_n & C_{n-1} & \dots & C_i & \dots & C_1 \\ \hline r_n(=n) & r_{n-1} & & r_i & & r_1(=1) \\ \hline C_1(\text{cand}) & C_2(\text{cand}) & \dots & C_i(\text{cand}) & \dots & C_n(\text{cand}) \\ \hline \end{array}$$

• Harmonic Grammar minimizes a weighted sum of violations:

$$H(\text{cand}) = \sum_{i=1}^{n} w_i \cdot C_i(\text{cand})$$

Exponential HG: weights are ranks exponentiated, fixed base

$$W_i = e^{r_i}$$

$$W_i = q^{r_i}$$

• Optimality Theory minimizes a vector of violations:

$$H(\text{cand}) = \begin{array}{|c|c|c|c|c|c|} \hline C_n & C_{n-1} & \dots & C_i & \dots & C_1 \\ \hline r_n(=n) & r_{n-1} & & r_i & & r_1(=1) \\ \hline C_1(\text{cand}) & C_2(\text{cand}) & \dots & C_i(\text{cand}) & \dots & C_n(\text{cand}) \\ \hline \end{array}$$

• Harmonic Grammar minimizes a weighted sum of violations:

$$H(\text{cand}) = \sum_{i=1}^{n} w_i \cdot C_i(\text{cand})$$

• Exponential HG: weights are ranks exponentiated, fixed base

$$W_i = e^{r_i}$$

$$W_i = q^{r_i}$$

• Optimality Theory minimizes a vector of violations:

$$H(\text{cand}) = \begin{array}{|c|c|c|c|c|c|} \hline C_n & C_{n-1} & \dots & C_i & \dots & C_1 \\ \hline r_n(=n) & r_{n-1} & & r_i & & r_1(=1) \\ \hline C_1(\text{cand}) & C_2(\text{cand}) & \dots & C_i(\text{cand}) & \dots & C_n(\text{cand}) \\ \hline \end{array}$$

• Harmonic Grammar minimizes a weighted sum of violations:

$$H(\text{cand}) = \sum_{i=1}^{n} w_i \cdot C_i(\text{cand})$$

• Exponential HG: weights are ranks exponentiated, fixed base

$$w_i = e^{r_i}$$

$$w_i = q^{r_i}$$

• 1.5-HG has *ganging-up cumulativity*:

	W =	C ₃ 2.25	C ₂ 1.5	C ₁ 1	H
RF	cand1	1			2.25
	cand2		1	1	2.5

• 1.5-HG also has *counting cumulativity*:

	w _i =	<i>C</i> ₃ 2.25	C ₂ 1.5	C ₁ 1	Н
ß	cand1	1			2.25
	cand3		2		3

(Cf. Jäger and Rosenbach 2006)

• But OT does not have ganging-up cumulativity:

		<i>C</i> ₃	<i>C</i> ₂	<i>C</i> ₁
	cand1	*		
ß	cand2		*	*

• OT does not have *counting cumulativity* either:

	<i>C</i> ₃	<i>C</i> ₂	<i>C</i> ₁
cand1	*		
rs cand3		**	

(Regarding Stochastic OT, cf. Jäger and Rosenbach 2006)

• 3-HG does not have ganging-up cumulativity:

	<i>C</i> 3 9	C ₂ 3	C ₁ 1	Н
cand1	1			9
rs cand2		1	1	4

• 3-HG does not have *counting cumulativity*, either:

		<i>C</i> 3 9	C ₂ 3	C ₁ 1	Н
	cand1	1			9
ß	cand3		2		6

(Cf. Jäger and Rosenbach 2006)

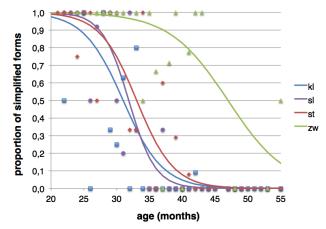
As we have known it since Prince and Smolensky 1993,

strict domination in OT can be reproduced

using q-HG with sufficiently large q.

Overview

Learning and Maturation


3 Consonant cluster simplification in Dutch

4 Summary

Word initial consonant cluster simplification in Dutch

Klaas Seinhorst collecting data from CHILDES (Laura):

Cf. Becker and Tessier (2011)

Word initial consonant cluster simplification in Dutch

Using logistic regression or probit regression:

cluster	simplifies	lower	upper
	to	boundary	boundary
		(age in days)	(age in days)
kl-	k-	894.32	1010.55
sl-	1-	943.82	1028.68
st-	t-	962.60	1076.23
ZW-	<i>Z</i> -	1344.24	1551.39

Table: 95% confidence intervals of the locations of the inflection points.

Differences among *kl*, *sl* and *st*: statistically not significant. But differences between *zw* and each of the three others: $p < 10^{-11}$!

Word initial consonant cluster simplification: OT

The traditional account:

• Before learning: Markedness >> Faithfulness

	/klɛin/	NOCOMPLEX	Faithf	*[l]	*[k]
		ONSET			
	[klɛin]	*!		*	*
ß	[kɛin]		*		*
	[lɛin]		*	*!	

• After learning: Faithfulness >> Markedness

	/klɛin/	FAITHF	NOCOMPLEX	*[I]	*[k]
			ONSET		
R\$	[klɛin]		*	*	*
	[kɛin]	*!			*
	[lɛin]	*!		*	

Word initial consonant cluster simplification: OT

Questions to the traditional account:

- Child is exposed to huge amount of evidence way before correct production. Why no learning?
- If only *NoComplexOnset* and *Faithf* are involved, why significant difference for *zw* onset?
- If cluster-specific constraints: factorial typology predicted.

Word initial consonant cluster simplification: q-HG

An alternative approach:

- Child has acquired FAITHF >> NOCOMPLEXONSET much earlier, probably already at pre-linguistic age.
- Relative ranks *[w] ≫ *[s] ≫ *[l] ≫ *[z] ≫ *[k] ≫ *[t] motivated by *natural phonology* (? feedback appreciated!).
- No more ranking needed. For instance,

Ci	FAITHF	NoCompl Onset	*[w]	*[s]	*[I]	*[z]	*[k]	*[t]
		UNSET						
r _i	8	7	6	5	4	3	2	1
$(1.1)^{r_i}$	2.14	1.95	1.77	1.61	1.46	1.33	1.21	1.1
2 ^{<i>r</i>} i	256	128	64	32	16	8	4	2

Word initial consonant cluster simplification: q-HG

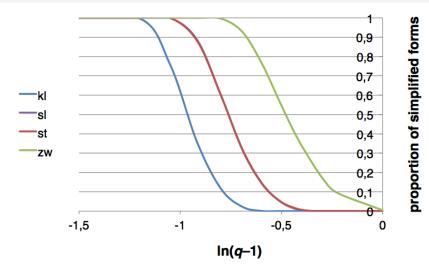
• Before maturation: small q, e.g., q = 1.1 (NB: Faithfulness \gg Markedness!)

	/klɛin/	FAITHF	NOCOMPLONS	*[I]	*[k]	H
	$W_i =$	2.14	1.95	1.46	1.21	
	[klɛin]		*	*	*	4.62
RF F	[kɛin]	*!			*	3.35
	[lɛin]	*!		*		3.60

• After maturation: large q, e.g., q = 2

	/klɛin/	FAITHF	NoComplOns	*[l]	*[k]	Н
	$W_i =$	256	128	16	4	
R	[klɛin]		*	*	*	148
	[kɛin]	*!			*	260
	[lɛin]	*!		*		272

Word initial consonant cluster simplification: q-HG


- *q* is a function of age, e.g. age $\propto \log(q)$.
- [xy] produced by q-HG, if q is s.t. $q^c + q^x + q^y = q^f + q^y$ or larger:

/xy/	FAITHF	*ComplOns	*[x]	*[y]	H for
$r_i =$	f	С	Х	У	given <i>q</i>
$W_i =$	q^{f}	q^c	q^{x}	q^y	
[xy]	0	1	1	1	$q^{c}+q^{x}+q^{y}$
[y]	1	0	0	1	$q^f + q^y$
[X]	1	0	1	0	$q^f + q^x$

- Critical age function of deleted segment [x], but not remaining [y].
- If f > c, x > y, then: step function predicted.
- To get S-shaped curve, use Stochastic OT.

Word initial consonant clusters: stochastic q-HG

DB.

Overview

Learning and Maturation

- 2 Exponential Harmonic Grammar, or *q*-HG
- 3 Consonant cluster simplification in Dutch

Five levels of cognitive modeling

- General cognitive principles: e.g., optimize a target function.
- **Cognitive architecture:** e.g., OT, bi-OT, Stoch OT, or *q*-HG.
- **Occupitive infrastructure:** e.g., value of *q* in *q*-HG.
- **Knowledge:** e.g., constraint ranking.
- Implementation, which might be prone to error (performance).

Maturation vs. learning

- Learning: acquiring knowledge based on observations possibly already in the pre-linguistic stage.
- Maturation: fine-tuning the infrastructure possibly due to physical and general cognitive development.
- Phonology goes from HG to OT (q from 1 + ϵ to large): speed ≫ precision.
- Syntax-semantics goes from OT to HG (q from large to 1 + ε): precision >> speed.

Points of discussion?

- Would you buy architecture vs. infrastructure distinction?
- Would you buy a *q*-HG model of maturation?
- $\bullet \ {}^*\![w] \gg {}^*\![s] \gg {}^*\![l] \gg {}^*\![z] \gg {}^*\![k] \gg {}^*\![t]$

Thank you for your attention!

Tamás Biró: tamas[dot]biro[at]yale[dot]edu

Many thanks to:

Pronoun resolution problem: data

The elephant is hitting him.

The elephant is hitting himself.

Source: P. Hendriks, http://www.let.rug.nl/hendriks/vici.htm. Drawings by R. Prins.

- Here is an elephant and an alligator. The elephant hits him-true?
- What does the elephant do?
- Children of age 4-6 are better at producing pronouns (and reflexives) than interpreting them. Interpretation performance: 50-80 %.

Pronoun interpretation problem: possible explanations

Government and Binding (GB):

- Principle A: anaphors must be bound within their domain.
- Principle B: pronouns must not be bound within their domain.
- Principle C: R-expressions must not be bound.
- Chien and Wexler: children do not have Principle B yet, due to apparent violations (*He_i looks like him_i*).
- Reinhart: insufficient working memory for mental computations.
- Petra Hendriks and Jacolien van Rij: too slow mental computation.
- Hendriks and Spenader: Principle A + bidirectional OT (Principle B not necessary). Children do not have bi-OT before fully developed Theory of Mind.
- Biró: implementation of OT (performance model) prone to errors, but not so much in Harmonic Grammar (HG).

From Harmonic Grammar to Optimality Theory

Candidate set 1 (no insertion), $K_{max} = 5$, $T_{step} = 0.1$.

Precision: probability of correctly interpreting The elephant hits him.

q	precision	
OT	0.500	
30	0.499 ± 0.008	
20	0.500 ± 0.012	
10	0.499 ± 0.003	
5	0.511 ± 0.001	
3	0.550 ± 0.005	
2.5	0.580 ± 0.003	
2.0	0.633 ± 0.003	
1.8	0.666 ± 0.003	
1.7	0.687 ± 0.007	
1.6	0.716 ± 0.006	
1.5	0.749 ± 0.008	

q	precision
1.4	0.790 ± 0.004
1.3	0.847 ± 0.001
1.2	0.911 ± 0.002
1.15	0.945 ± 0.003
1.10	0.978 ± 0.001
1.08	0.986 ± 0.001
1.06	0.994 ± 0.001
1.05	0.997 ± 0.001
1.04	0.9985 ± 0.0003
1.03	0.9991 ± 0.0005
1.02	0.99977 ± 0.00015
1.01	0.99997 ± 0.00006