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Chapter 1

Introduction

In this paper I shall combine three current research fields within computational
linguistics. The first one is learnability. This refers to a special aspect of linguis-
tics: the adequateness of a linguistic theory from the point of view of acquiring
the language. A theory should possibly lead to some learning algorithm of the
language, and it is even better if this learning algorithm can somehow simulate
real life cases of language acquisition (L1 and / or L2).

The second component of this paper is Optimality Theory (OT; cf. Prince
& Smolensky, 1993). This model has been extremely popular in the last decade
in most fields of linguistics, especially in phonology. The basic reference about
learnability in OT is Tesar & Smolensky [2000]. As we were told at ESSLLI’02:
“A theory without exemples is like a car without an engine: it might be beau-
tiful, but does not bring you anywhere”. Therefore I will work on stress assign-
ment, a classical paradigm in OT (c.f. Tesar & Smolensky, chapter 4).

The last ingredient is Finite State technology. Karttunen [1998], Frank &
Satta [1998] and Gerdemann & van Noord [2000] have presented the way an
Optimality Theoretical model can be implemented using Finite State Trans-
ducers (FSTs). FSA Utilities (van Noord [1997], van Noord [1999], van Noord
& Gerdemann [1999]) will serve as the computational tool for implementing any
OT model, and therefore this investigation can help in gauging the capacities
of finite state Optimality Theory.

It will turn out that when using real language data, the story is not as simple
as presented in Tesar & Smolensky [2000], chapter 4. The “noise” appearing in
the data will motivate a new approach to the lexicon. From a learning point of
view we cannot neglect irregular data (how could the algorithm know in advance
which forms are irregular?), and we would like to avoid overfitting, as well, i.e.
learning a too complicated model that could account for all the data. I rather
propose to speak about the learnability of a complex lexicon, in which all lexical
items are associated with one (or more) co-grammars (hierarchies, in the case of
OT). I believe that this approach should replace the classical paradigm of trying
to find a uniform model which accounts for all data, but is too complex and far
from being universal. (In fact in most linguistic models the OT constraints tend



to become too language specific, and this contradicts the basic ideas of OT.)
The crucial question then is to make this complex lexicon as simple as possible.

To summarize, the outcome of this investigation should be the followings:
a learning algorithm usable for word stress analysis, within an OT framework;
a Finite State Optimality model for stress, espacially for Dutch; side results
about Finite State Optimality (for example: what constraints can be realized
with finite state transducers?); and finally a new model for the lexicon.

In the 2nd chapter I shall summarize in a nutshell what should be known
about these ingredients. In Chapter 3 I shall formulate the problem of learning
(Dutch) stress, and present to way to solve it. Chapter 4 will present my pre-
liminary results, including a discussion about contraints that cannot be realized
using FSTs. The question of possible lexical models will be addressed in Chap-
ter 5. At the moment, this is just mere speculation. Finally my PhD proposal
shall be discussed in Chapter 6, followed by my time planing in Chapter 7.



Chapter 2

Optimality Theory,
Learnability and Finite
State Technology

2.1 Basics of OT

Optimality Theory has been a leading paradigm in linguistics, especially in
phonology, since its appearance in 1993 (Prince & Smolensky [1993], from here
on I will refer to it as P&S). Another key reference will be Tesar & Smolensky
[2000] (T&S from now on).

Its main claims can be summarized as follows:

e The grammar is composed of two parts: the Gen modul generates a (pos-
sibly infinite) set of candidates out of the given underlying representation,
while the Fval modul determines the optimal element of this set. The op-

timal element will be the grammatical form (the surface representation).
1

e There is an universal set of constraints, each of them assigning a given
number of violations to each of the candidates.

IThere is here a couple of points for possible confusion. First, the term “derivation”
is avoided by people within the OT paradigm, when refering to the mapping between the
underlying representation and the surface representation. This term is used only to refer to
the derivations within the pre-OT generative frameworks, whereas OT sees itself as being a
“non-derivational” framework. The term “production-directed parsing” is used instead by
T&S. Futhermore the term “generating” is mostly used to refer to production of the set of
candidates by Gen.

Another point of possible confusion is the use of the term “input”. The underlying repre-
sentation is the “input of the production-directed parsing”, while the “input of the learning
algorithm” is a data, a surface form, corresponding to one or more of the possible outputs of
the production-directed parsing.



e For each constraint these violations assigned define a strict partial order
called harmonic ranking on the set of the candidates.

e For each language there is a (fully) ranked hierarchy (i.e. a sequence
of application) of these constraints. The way Gen determines the opti-
mal candidate is dependent only upon the ranking of these constraints.
Informally, the highest ranked constraint filters out the candidates for
which there is another candidate being assigned less violation marks (be-
ing “more harmonic” according to harmonic ranking). Then the second
highest ranked candidate filters out further elements of the remaining set
of candidates, using the same method, etc.

The Richness of the Base principle (P&S, section 9.3, T&S p. 30 and
75) says that all inputs are possible in all languages, and distributional and
inventory regularities follow from the way the universal input set is mapped
onto an output set by the grammar.

In other words, cross-linguistics varieties are exclusively due to the different
rankings of the same universal constraints. It is not always true, however, that
different rankings lead to different languages. Furthermore, not all rankings
represent possible languages, if one introduces the notion of universal sub-
hierarchies (P&S, ch. 9, p. 198; T&S p. 47). The latter imposes universal
restrictions on possible constraint rankings.

2.2 Finite State Automata and their application
to OT

Classical generative morphology and phonology, based on Noam Chomsky and
Morris Halle’s The Sound Pattern of English [1968], consisted of context sen-
sitive rules of the form z -5 y / a _ b, but it has been early proposed that
phonological rules do not need such powerful tools (the dissertation of C. Dou-
glas Johnson: Formal Aspects of Phonological Description [1972]). In the 80s,
this idea led to early investigations at Xerox in using finite tools in phonology:
the classical source for using Finite State Automata in this field is Kaplan &
Kay [1994].

Kimmo Koskenniemi introduced the term “two-level rules” in 1983, that is
a finite-state transducer mapping between the underlying form and the surface
form. A major step, giving a big impetus to the researches in Finite State
technology, was when Koskenniemi made their implementation freely available
in 1996, under the name PC-KIMMO (Antworth [1990] and also the web site
at http://www.sil.org/pckimmo/)). Further works were done in the 90s by
Karttunen (e.g. Karttunen et al. [1996]).

For an overview of the history of Finite State morphology, look at Karttunen
& Beesley [2001].

The first steps to use this technology on Optimality Theory are represented
by Frank & Satta [1998] and Karttunen [1998]. The next step, that will be the
starting point of my investigation is Gerdemann & van Noord [2000].



The idea is to see both Gen and FEwval as being Finite State Transducers
(FSTs). The highly non-deterministic FST that implements Gen will output
the set of candidates corresponding to the underlying form that it receives as
its input.

Then we compose this FST with the FSTs representing the constraints in a
serial way. These latter ones function as filters, outputting only the harmonic
subset of their input set, and “killing” the candidates that are not optimal for
the given constraint. The output of the last transducer, corresponding to the
lowest ranked constraint, will be then the optimal for of the given grammar.

The FST representing each constraint as a filter consists of two components.
The first one (usually called mark 0T _violation(Constraint))is a determinis-
tic FST, characteristic to the constraint, adding the required number of violation
marks to each candidate (usually the @ symbol will be used for the violation
marks). The second component is the same for all constraints, and is in charge
of filtering out those candidates that have more than the minimal number of
violation marks.

There has been two approaches for realizing this. The approach of Karttunen
[1998] is called the “counting approach”, and is based on the so-called “lenient
composition”, defined by using what they call “priority union”. In this approach
a constraint would filter out the candidates having more than zero violation
marks if there is a candidate having no violation marks, otherwise all are let
further. Therefore additional steps are needed for the same constraint, filtering
out respectively those having at least two violation marks if there is at least one
candidate that has less violation marks; another one filtering out those having at
least three violation marks if there is a candidate having less, etc. This approach
can be exact, and not only an approximation, only if there is a maximal number
of violations that a candidate can be assigned (e.g. because there is a maximal
length for words).

The approach by Gerdemann & van Noord [2000] is called the “matching
approach”. This latter filters out the candidates having more than minimal
violation marks by adding a further violation mark to the set of candidates,
and then taking the difference of the two sets. This approach works only if all
non-optimal candidates can be be produced by adding one violation mark to a
more harmonic candidate. If this is not the case, further tricks should be used
(like the permute_marker operator), with a given precision.

2.3 Learnability of OT

Since Gen and the set of constraints ? are universal, the learning task in an OT
framework means to find the (or one) hierarchy that would describe the set of
data.

T&S have given an algorithm called Constraint Demotion (CD) that can do
that this task pretty efficiently. As they show it (p. 99, theorem 7.29), CD

2 As well as the input set according to the Richness of the Base Principle, but the importance
of this might depend upon the concrete linguistic problem in question.



converges to a hierarchy generating the language after no more than N(N — 1)
informative examples, where N stands for the number of constraints.

The major problem I've found with this algorithm is the fact that it uses
stratified hierarchies. A stratified domination hierarchy is (c.f. p. 37, for a
more exact definition c.f. p. 91) a list of strata, each of them being a set of
constraints. Harmonic ordering is defined by “collapsing all the constraints of
a stratum”: minimal violation with respect to a stratum is determined by the
candidate incurring the smallest sum of violations assessed by all constraints in
the stratum. As we shall see in the next section, this will lead us to serious
problems.

The only information we can say is that applying the CD algorithm results
in a stratified hierarchy that produces a language including the data set being
the input of the learning algorithm. In fact one underlying representation (one
input to Gen) can result in a number of outputs (alternating surface forms,
according to the theory), ® and possibly only some of them appear among the
training data of the learning algorithm. ¢ A further problem is that it has been
a general assumption that languages should be modelled by using fully ranked
hierarchies (c.f. T&S p. 24), and — as we shall see it in the next section — the
relation between the winner set of a stratified hierarchy and the winner sets of
its refinements (T&S, p. 92, definition 7.6) is far not obvious.

The version of CD that one can easily implement is Error Driven Constraint
Demotion (EDCD, p. 50). This algorithm compares the winner, that is the item
taken from the positive dataset, with the loser, that is the optimal candidate
generated from the underlying form of the winner, using the actual constraint
hierarchy. If they coincide, the actual learning data is said to be not informative,
otherwise some constraints can be demoted, leading to a new hierarchy being
closer to the one to be learned.

Another algorithm described by Tesar and Smolensky (c.f. Chapter 7.6) is
Recursive Constraint Demotion (RCD). Its advantage is that it can determine
if the data-set is inconsistent (p. 110), a situation that is very likely to happen
in the cases we will soon describe (either when using RIP, or having noisy data,

3This can be the case also with fully ranked hierarchies. But for fully ranked hierarchies
such a case can only occur when each of the winner candidates is assigned exactly the same
violations. This would mean that the constraints are not able to distinguish between some
candidates, and consequently these equivalent candidates are not real “multiple solution” from
an OT point of view. Such a case can be rulled out only by restricting Gen or by adding new
constraints, both being violations of the supposed universality of these componants. In the
case of stratified domination hierarchy however, on the other hand, we may have real, not
equivalent alternates.

4Tesar and Smolensky would propose to use these equally harmonic alternative outputs as
negative data (supposing we know that there are no alternating surface forms in the language)
for a further learning step of CD. This is what I also did in my algorithm. But this will be not
always sufficient for us when using data not comming form one target hierarchy. Suppose we
have learned a stratified hierarchy from a subset of our data in the sense that all elements of
this subset are the unique outputs of the model for the relevant underlying representations. In
this case, when applying the given hierarchy to other learning data, it will sometimes turn out
that the model outputs the correct form among other incorrect ones. If we used this fact as a
trigger for further learning step, the new, refined hierarchy could possibly not model anymore
some of the original data it did.



or if the language cannot be covered with one grammar).

In fact both EDCD and RCD presuposes that the set of learning data are
fully parsed, in the sense that the data (the overt form) is equivalent to exactly
one of the candidates generated by Gen. This is the case for syllable structure,
the par excellence paradigm in OT since P & S, but is not the case for stress
assignment based on feet. In other words, different parses (different structural
descriptions) can lead to the same surface (overt) form. For instance a three-
syllabic word with a stress on its middle syllabe (o & o) corresponds at least to
two parses: either the first two syllables are parsed into a right-headed (iambic)
foot ((¢ & ) o), or the last two syllables are footed into a left-headed (trohaic)
foot (o (o 0)).

Therefore an extra step is needed in this case. Tesar and Smolensky call it
Robust Interpretive Parsing (RIP): this is choosing the optimal (harmonic) form
(with respect to a given hierarchy) in a similar way to the standard “production-
directed parsing” of OT, but taking into consideration only the set of candidates
that correspond to the surface form of the given data. This process is said to
be robbust because it assigns a description to an overt form even when there is
no description matching that overt form that is grammatical (i.e. optimal for
its underlying form) according to the current ranking (p. 58).

In a case like learning stress assignment therefore an itterative algorithm is
needed: in the first step a parse (a structural description) is assigned to each
overt form of the data set, presupposing an initial constraint hierarchy. Then a
new hierarchy is tried to be learnt by Error Driven Constraint Demotion, based
on this set of robbustly parsed data. As it is not garanteed that this new ranking
can fully account for the set of data, the RIP process is used again to create
a new set of parsed data before going once again into EDCD, etc. There is no
garantee that this RIP/CD algorithm will converge to a hierarchy, although it
did in a relatively high percentage of Tesar and Smolensky’s experiments (cf.
pp. 68-70). Chapter 4.4 of T&S presents the cases where the algorithm can fail.

2.4 Problems with unranked hierarchies

Tesar & Smolensky propose the notion of stratified hierarchies (p. 37, p. 91) asa
working tool when aiming to reach the fully ranked target hierarchy. They pro-
pose that the violations should be sumed up within one stratum before choosing
the set of the optimal candidates surviving the given stratum. They propose
this by hoping that the fully ranked target hierarchy should be a refinement (cf.
p. 92, definition 7.6) of the algorithm’s output hierarchy. In fact this is not
the case, at least if constraints can assign multiple violations (which is the case
in most applications, including those presented in T & S). Let ut look at the
following example:



C1 Co C3
A * *
B %k
C kK
Figure 1.

Let us suppose that we have three candidates, A, B and C, violating the
three constraints as shown by Fig. 1. It is clear that out of the six possible
full rankings of these constraints, candidate A will be the winner one if and
only if c3 is ranked higher than the two others. If ¢y is the highest ranked one,
B will be the optimal candidate, whereas C is the best if ¢; is the first in the
hierarchy. Consequently, if the input data of the learning algorithm is A, the
target hierarchy is either ¢z >> ¢; >> ¢o or ¢g >> c3 >> ¢;. In fact, if the
initial hierarchy Hg of the CD algorithm contains all of the three rankings in
the same stratum, A will turn out to be the only output of the given hierarchy
already in the first step, therefore the algorithm will immidiately stop. This
result is not bad in the sense that the fully ranked target hierarchy is indeed
a refinement of the output hierarchy of the algorithm. But in order to find
it, we should try out all possibilities, an additional task that makes actually
the CD algorithm totally unnecessary. Furthermore, if for some reasons the
initial hierarchy is ¢1,ca >> ¢3 (e.g. because we want initially the markedness
constraints to dominate the faithfullness constraints, or another learning data
has previously led the algorithm into this state), candidate A will again turn
out to be the optimal candidate, but it is clear that none of the refinements of
this hierarchy would return A.

A widely accepted alternative approach for defining unranked constraints is
proposing that the output of a stratified hierarchy is the union set of the outputs
of all its refinements. But this approach is highly unpractical for learning pur-
poses, because if the initial hierarchy is totally or almost totally unranked, then
the number of all its fully ranked refinements to be tried out can be extremely
high. In fact, in many cases there won’t be too much advantages of using the
CD algorithm as compared to a blind search.

Unless we do it the following way: we never calculate all the outputs of
a given stratified hiearchy, but take only a random refinement of it. If the
candidate it returns as the optimal one coincides with the winner (the input
data of the learning algorithm), we stop, since we have found one fully ranked
hierarchy that returns us the winner. We don’t care about seeking other possible
hierarchies, or a more general class of solutions. On the other hand, if this
refinement returns another optimal form, different from the winner, this latter
can be used as an informative competitor for demoting some constraints.

Another possibility is not to use stratified hierarchies, but fully ranked ones.
The initial hierarchy is already a (maybe randomly chosen) fully ranked one,
and in each step when we have to demote a given constraint ¢; below an other
constraint cz, the way to do that is to insert ¢; between ¢ and the one imidiately

10



below it. In fact, in a situation when both ¢; and ¢y are to be demoted below
c3, it will be arbitrary whether the algorithm will result in c3 >> ¢; >> co or
C3 >>Cy >> C1.

11



Chapter 3

Formulating the problem:
learning stress

Learnability researches usually presuppose that the set of data can be described
with one, consistent model. What happens, as it is the case in many occasions,
when the data from the language can be put apart into a number of classes, each
of them describable with a different model. Language acquisition observations
(the so-called ”U-shape development”, when the behaviour changes from good
performance to poor performance, before improving again, cf. e.g. Harley
[2001:96 and 125]) have proven the adequateness of the use of so-called ”minor
rules”.

The typical example is when some of the English speaking children learn the
correct past tense form of the verb bring in four steps. In the first one these
children use the correct form brought, since that is the one they have heard.
Due to their enriched vocabulary and increasing number of data, in the next
step they establishe the rule according to which the past tense can be formed
by adding the suffix -ed to the base. This results in the incorrect form xbringed.
In the third step, after having some feed-back about irregular verbs, they set
up a "minor rule” producing the past tense by an umlaut: using the analogy
sing-sang-sung and ring-rang-rung (s)he will form bring-xbrang-+xbrung. Only
the last step will bring back to the correct form bring-brought-brought.

Although there are significant arguments against the claim that all chil-
dren always prove to show a ”U-shape learning”, this maybe too simplistic
model might still have some bits of truth. Furthermore it might be useful for
computational applications, therefore it may be worth trying out the following
algorithm:

Algorithm U-shaped-learning
Given: L: set of data
U-shaped-learning(L)

L’:= empty-set

G:=empty-set

12



Repeat
Find (L* subset of L\ L' and G* grammar) such that G* models L*

L’:= L’ union L*
G:= G union {(L*, G}
Until (L’=L)

Return G={(L1, G1), (L2, G2),...(Ln, Gn)}
// subsets of L, each of them described by a model

To sum up, I would suggest to replace the actual paradigm of seeing the
grammar of a given language as a uniform, homogeneous model, by supposing
that the grammar of a given language is in fact composed of a number of ”co-
grammars”. Or of co-phonologies, as we want to stick to phonology (including
morpho-phonology).

As shown in the previous chapter, I have been examining the learnability
of metrical stress. Stress is a good field for such studies, since — as pointed
out by Tesar & Smolensky [2000:53] a lot is known about it and can be
treated somewhat in isolation from other aspects of phonology. Dutch metrical
stress is a very complex issue (Gilbers & Jansen [1996], Joanisse & Curtin),
understanding this will be one of the ultimate goals of this study. A quick look
to our data proves that no single and simple grammar can account for all of
them. Just consider words of three light syllables, that can have a stress on the
first (e.g. Pdnama), on the second (e.g. pijama) or on the third (e.g. Tahiti)
syllable. An even better example for showing that Dutch stress is not predictable
is de régeling (‘rule’) as opposed to de regéring (‘government’). Supposing
that the only difference in their underlying form is the [I] vs. [r] opposition,
it is highly improbable that stress assignment would make reference to some
features that differentiate between these two very similar phonemes. A further
complicating factor is the recognition of compound words. (And even if one
could automatically recognize the most common morphemes, some cases are
not predictable: the prefix onder is for instance stressed in ondergaan and
unstressed inonderstrepen.) !

I believe that the fact that the group represented by pijama is told to be the
regular one as opposed to Panama or to Tahiti is irrelevant from a learnability
approach, since the learner is simultaniously exposed to all data (not speaking
of the noice present), and the property of ”being regular”, i.e. being the biggest
group is only an a posteriori observation. Furthermore, as seen in the above
example of ”U-shape learning with minor rules”, such as in the following case
of segolate nouns in Modern Hebrew, subgroups of the irregular words may also
show regularities, sometimes even being productive, therefore the ”general” or
"major” rule is seen as such only because of the size of the set of covered words.

One would argue that productivity is the main characteristics of the “major
rule” that makes it special, as opposed to the “minor rules”. But productivity

IThese facts suggest that the idea of improving the finite state grapheme-to-phoneme
conversion in Bouma [2000] by using information on predicted stress would not always work.
Although the idea might be tried out, and one could construct an FST that works for lexemes
belonging to the widest class.

13



is probably irrelevant for learning, and I believe that it is again an a posteriori
property: the very fact that this group is the biggest may cause the new words to
join this group. A fact that results in the biggest group become “far the biggest”.
Furthermore, some “minor rules”, such as the segolate-stress in Hebrew, can
also be productive, if the newly introduced word shares the most characteristic
properties of the group (e.g. the Modern Hebrew word seret, ‘'movie’, that has
two [e] sounds, too, became a segolate).

As the first example I will use Hungarian data, where the stress is always
on the first syllable of words (bearing stress). Modern Hebrew stress will serve
as the second set of data, where the situation is just slightly more complicated:
the major rule puts the stress on the final syllable, whereas a minor rule puts
it on the penultimate. The exact conditions for using this or that rule will not
interest us. Then we go on to the very complex Dutch data.

The learning algorithm I have used is the following:

Algorithm Learning Co—phonologies
Given: L: set of data
Learning_co-phonologies (L)
L’:= empty-set
G:=empty-set
Repeat
T:= random subset of (L\L’) // in each step it gets smaller and smaller
Find (a grammar G*) such that G* models T
If found then
L* := the subset of L that can be modelled by G*

L’:= L’ union L*
G:= G union {(L*, G}
end-if
Until (L’=L)

Return G={(L1, G1), (L2, G2),...(Ln, Gn)}
// subsets of L, each of them modelled by a grammar

Remark that each grammar G* found is associated with the biggest subset
L* of L that can be modelled by G*. Therefore these subsets of L can overlap.

Another direction would be to find a model independently for each word,
instead of trying to look for random subsets of the data set. In the case of noisy
data, or in the case of a number of “minor rules”, each of them applicable to a
significant part of the lexicon, this approach could be even more successful.

3.1 The “program package”

The “software package” I have been developing so far can be downloaded from
http://odur.let.rug.nl/"birot/stress-group. It contains the following
files:

1. Program files written in C

14



e cd.c: This is the implementation of T&S’s RIP/CD algorithm. It
makes use of the the OT model applied to Finite State Transducers,
implemented on FSAG. In the following I shall explain more details
about it.

e par.c: Distributes the data to parallel child processes, each of them
running cd.c, and then checking if a hierarchy has been learned.

e check.c: Evaluates all the data with respect to a given hierarchy,
whether they can be modelled by the given hierarchy. Each data is
given a value: 0 stands for the overt form of the learning data not
occuring among the outputs. 1 stands for the overt form occuring
among the outputs, but there are several outputs with different vi-
olation marks (the case typical to stratified hierarchies). 2 stands
for the case when the learning data occurs in the output, together
with other candidates, but all of them are assigned exactly the same
violation marks. Whereas 3 is assigned when the learning data is the
only output of the hierarchy if inputting the corresponding underly-
ing form.

2. cd.c uses the following Prolog files describing FSA’s:

e stress-prod.pl: The main file for production directed parsing.

e stress-ip.pl: The main file for the RIP algorithm. Both are aux-
iliary files for FSAG, loading some of the following files.

e con.pl: The FSTs assigning the violation marks of the constraints.
e gen.pl: contains the Gen-modul

e ip.pl: contains the interpretive parsing modul

e def.pl: basic definitions of FSA

e matching.pl: matching algorithm according to Gerdemann & van
Noord [2000].

e replace.pl: Context-sensitive replacing operator, adapting the so-
lution of Gerdemann & van Noord [1999]. Both the two last files are
included among the examples of FSA Utilities.

3. Inputs and outputs of the algorithm

e data: The list of input words, given in a form like talLl.masH. Sylla-
ble borders should be marked with a period (only within the word,
and all syllables should end with the specification of the syllable type:
L for light, H for heavy and S for super heavy. Stress is marked with
numbers before syllable type specification: 1 stands for primary stress
and 2 stands for secondary stress. A word must contain exactly one
primary stress. I recommend using lower case letters for giving the
word, but in fact they do not play any role in the algorithm (as long

15



as they do not coincide with some character used as a special sym-
bol, like the ones mentioned so far, or @ used for constraint violation
mark, * refering to the beginning of the word, # to the end of the
word, etc.).

e hinit: The initial hierarchy is given in this file. The syntax of this
file is the following: each stratum is introduced by a line beginning
and ending with the # symbol. I recommend writting the number
of the stratum here, but this is not necessary, since the program
will automatically fill in the first strata. Then all constraints are
given in a separate line. Remarks can be put before the first line
containing two # symbols. The file given in the stress-group package
is an example file, that can be rewritten.

e hout: The output hierarchy, produced by the algorithm. It is given
in the same format, therefore it can be reentered to the algorithm
after simply renaming it.

4. Documentation:
e read.me: a documentation file.

5. The following files are created by running cd.c, but are not needed before-
hand:

e 0.constdem.tmp: The results of running the FSA’s are written here.

0.constdem.tmp.c: It contains the ¢ program generated by FSA
Utilities.
e 0.mark.xxx.fsa where 'xxx’ are the names of the used constraints.

e 0.stress.fsa: production and RIP.

0.constdeml.tmp: this is an executable file.

Remark: the temporary file names all start with the ”0.” string, and can be
deleted by "rm 0.*".

A few more words about the cd.c program: it realizes the RIP/CD learning
algorithm described in T&S. Tt calls FSA Utilities to build certain transducers:
the ones assigning the violation marks, the one doing the production directed
parsing, and the one realizing the Robust Interpretive Parsing. Since the ones
assigning the violation marks are deterministic, they are stored and run as
compiled C-programs for the sake of saving time. The FSTs realizing the two
kinds of parsing are rebuilt and saved each time the hierachy changes. In fact,
in order to save time, the production directed FST representing the hierarchy
of the previous learning data is saved, so that if learning turns to be resultless
after five learning steps, the going back to the previous hierarchy should not
cause wasting time (c.f. T&S, p. 69).

I have gone through the all data-set five times, before concluding that the
dataset is not learnable. That is I repeated the iterative RIP + CD algorithm
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five times. Each time I first parsed all the data using RIP, with respect to
the actual hierarchy, and then I used these data for CD learning. This latter
consisted of going through each data, and executing maximum five learning
steps for each data (c.f. T&S, p. 69). If the hierarchy after the fifth step
did not account for the learning data, then I went back to the hierarchy before
taking that data, and went forth to another data.

In each learning step I produced the harmonic candidate with respect to
the actual hierarchy, and tested it. If the harmonic candidate coincided with
the target parsed data (the winner), or alternatively, if one of the harmonic
candidates coinceded with it, and all the harmonic candidates were assigned
exactly the same violation marks, then the actual hierarchy was said to account,
for the actual learning data. Otherwise a random element of the harmonic set
was taken as the loser. If the winner was also in this set, but not all the harmonic
candidates were assigned the same violation marks (as a result of the hierarchy
being stratified ), an element not having the same violation marks as the winner
was taken as the loser.

In reality I redefined a little bit the CD algorithm defined by T&S (p. 95).
My algorithm is equivalent, but has a different form (C(a) refers to the number
of violation marks assigned by constraint C' to form a):

ip := the highest stratum in which there is a comstraint C*
such that C'(winner) < C(loser).

for each constraint C (being in a stratum not lower then ig):
if (C(winner) > C'(loser))
then {demote C to stratum o+ 1}.

(Remark: the strata are numbered from 0 onwards, stratum 0 being the
highest ranked one.)

3.2 The FSTs used

What does the files mentioned in the previous section contain? The file def .pl
give the general definitions used in the remaining files:

:- multifile macro/2.

% You should have the input in the form: [[phoneme*, syllable-type, ’.’I1%,[phoneme%,
syllable-typell

% In interpretative parsing: [BOW, [phoneme*, stress-type,[], syllable-type, ’.’]*,EOW]

% phonemes: a..z

% syllable types: L=3, H=4,5=5

% end of syllable:

% beginning of word: *; end of wor(l)d: #

% Inserted by Gen:

% foot brackets: left: [ ; right,];

%stress: primary stress: 1, secondary stress: 2

macro (phoneme,a,b,c,d,e,f,g,h,i,j,k,1,m,n,’0’,p,q,r,s,t,u,v,w,’x’,y,z).

% @ is the mark for constraint violation, always put after ’.’, among the phonemes
% Other symbol used: T is used in con.pl (temporary violatiom), C, D.
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macro(ls,’L’). % light syllable

macro(hs,’H’). % heavy syllable

macro(shs,’S’). % super heavy syllabe
macro(syllable-type, 1s,hs,shs).

macro(eos,’.’).

macro(i-eos,[]1:2.7).

macro (bow,’*’) .

macro (eow, ’#7’) .

macro (i-bow, [1:7%?).

macro(i-eow, [1:°#7).

macro(i-sfl,[1:°[’). 7% secondary feet (not the main foot)
macro(i-sfr,[1:°]17%).

macro(sfl,’[’).

macro(sfr,’]’).

macro(i-mfl,[]1:°’). % main foot

macro (i-mfr, []:°?).

macro(mfl,’’).

macro (mfr,’’).

macro(fl, *°> , [’ ).

macro(fr, *°> , ’]1° ).

% eos = end of syllable; bow = beginnign of word; eow = end of word
% i-fl = insert foot left, i-fr = insert foot right

% stresses:

macro(i-ps,[1:°1°).

macro(i-ss,[]:72°).

macro(ps,’1’).

macro(ss,’2’).

macro(stress,ps,ss).

macro(underlying-form, ? - stress, stress:[]x).

macro (make_output, [bow:[],? -fl, fr, f1, fr:[]*, eos:[], eow:[1]).
macro (output-production-directed-parsing,fl,fr,stress).
macro (output-interpretive-parsing,fl,fr).

The constraints are formulated in con.pl:

% structure of the word: % [bow, [f1”, phoneme*, stress”, syll-type, fr~, eos,
@*]+, eow]
:—ensure_loaded(def) .
:— ensure_loaded(replace).
:- multifile macro/2.
macro (tmpviol, {’T’}). % temporary violation
% Constraints mentioned in Tesar & Smolensky, 2000, p. b54:
% Foot Binarity:
% "Each foot must be either bimoraic or bisyllabic"
% (A foot should contain more than one mora, i.e. a heavy syllable or two syllables.)
macro (mark_ot_constraint(footbin,M), replace([]:M, [fl, phoneme*, stress, ls, fr,
eos], [1)).
% Weight to Stress Principle (WSP):
% "Each heavy (and super heavy) syllable must be stressed."
macro (mark_ot_constraint (wsp,M) ,replace([1:M,[(? -stress),hs,shs,frseos],[1)).
% Parse syllable:
% "Each syllable must be footed" (remark: each foot contains max. 2 syllables,
i.e. each
% footed syllable is either on the left or on the right border of a foot).
macro (mark_ot_constraint (parse,M), replace([]:M, [{bow,eos}, {? -{fl, fr, eos}}*,eo0s],

.
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% Main-Right:
% "Align the head-foot with the word, right edge."
macro(mark_ot_constraint (main-right,M), replace([]:M, [mfr, eos, ? *, eosl, [1)

% Main-Left:

% "Align the head-foot with the word, left edge."

macro (mark_ot_constraint (main-left,M), replace(eos:[eos, tmpvioll) o replace(tmpviol:[],
[mfl, ? #*],[]) o replace(tmpviol:M)).

% remark: that is the only place where I couldn’t avoid using ’mfl’ in order to
have a t-determinizable FST.

% Word-foot-right:

% "Align the word with some foot, right edge"

macro (mark_ot_constraint(wfr,M), replace([]:M, [(? -fr), eos], [Mx, eow])).

% It is crucial that all mark ot_constraint’s assign the same violation symbol,

% and that nothing else come after the last eos, before the eow symbol.

% Word-foot-left:

% "Align the word with some foot, left edge"

macro(mark_ot_constraint (wfl,M), replace([1:M, [bow, (? -{fl, eos})*, eosl, [1)).

% Iambic:

% "Align each foot with its head syllable, right edge."

macro (mark_ot_constraint(iambic, M), replace([]:M, [? -stress,syllable-type,fr,eos],
.

% Foot Nonfinal:

% "Each head syllable must not be final in its foot"

macro (mark_ot_constraint (footnonfinal, M), replace([]:M, [stress,syllable-type,fr,eos],
a».

% remark: in this formalism, Iambic and FootNonfinal are really each other’s opposite,
in one sence.

% Nonfinal:

% "Do not foot the final syllable of the word"

macro(mark_ot_constraint(nonfinal, M), replace([]l: M, [fr,eos], [M*,eowl)).

% It is crucial that all mark ot_constraint’s assign the same violation symbol,

% and that nothing else come after the last eos, before the eow symbol.

% Remarks: originally: macro(mark_ot_constraint(nonfinal, M), replace([]:M, [fr,eos],
[(? -eos)*, eowl)).

% But this cannot be determinized

% Constraints in Dicky Gilbers & Wouter Jansen: Klemtoon en Ritme in Optimality
Theory

% Primary-stress-to-superheavy

% Superheavy syllable must bear primary stress (it is Peak-prominence for SH syllables,
p. 68-69.)

macro (mark_ot_constraint (pssh,M) ,replace([]:M,[(? -ps),{shs},frseos],[1)).

The file replace.pl is the adaptation of the algorithm described in Gerde-
mann & van Noord [1999] to implement the left most match replacement.

The matching.pl defines two operators. The oo optimality operator has
been adapted from Gerdemann & van Noord [2000], and its main idea has been
explained in section 2.2. I have introduced another operator, in order to be
able to work with stratified hierarchies. Based on T&S’s proposal to simply
summarize the violation marks within one stratum, the xx operator refers to
the recursive composition of the FSTs assigning the violation marks of the given
constraints:

macro (mark_ot_constraint(Conl xx Con2, M),
mark_ot_constraint(Conl, M) o mark._ot_constraint(Con2, M)).
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This results in a “complex constraint” that can enter Gerdemann & van
Noord’s optimality operator.
Here is the way to formulize the Gen modul in gen.pl:

:—ensure_loaded(def). %% Needed: def.pl :- multifile macro/2.

macro(data_preparation, [i-bow,{?}*,i-eos,i-eow]).

macro(non-footed-syllable, [phoneme*, syllable-type, eos]).

macro(non-head-foot, {[i-sfl,phoneme*, i-ss, syllable-type, i-sfr, eos],
[i-sfl,phoneme*, i-ss, syllable-type, eos, phoneme*, syllable-type, i-sfr, eos],
[i-sfl,phoneme*, syllable-type, eos, phoneme*, i-ss, syllable-type, i-sfr, eos]

b.

macro (head-foot, {[i—mfl,phoneme*, i-ps, syllable-type, i-mfr, eos],
[i-mfl,phoneme*, i-ps, syllable-type, eos, phoneme*, syllable-type, i-mfr, eos],
[i-mfl,phoneme*, syllable-type, eos, phoneme*, i-ps, syllable-type, i-mfr, eos]

N.
macro(gen, data_preparation o [bow,{non—footed—syllable, non—head—foot}*, head-foot,
{non-footed-syllable, non-head-foot}*, eow]).
macro (output,output-production-directed-parsing).

The first step of IP (Interpretive Parsing) is very simillar to it. The only
difference is that the generated set of candidates must represent the same overt
form, i.e. they should match the input with respect to the stress location,
instead of insterting stress:

:—ensure_loaded(def). %% Needed: def.pl :- multifile macro/2.

macro(data_preparation, [i-bow,{?}*,i-eos,i-eow]).

macro (ip-non-footed-syllable, [phoneme*, syllable-type, eos]).

macro (ip-non-head-foot, {[i-sfl,phoneme#*, ss, syllable-type, i-sfr, eosl,
[i-sfl,phoneme*, ss, syllable-type, eos, phoneme*, syllable-type, i-sfr, eos],
[i-sfl,phoneme*, syllable-type, eos, phoneme*, ss, syllable-type, i-sfr, eos]

.
macro(ip-head-foot, {[i-mfl,phoneme*, ps, syllable-type, i-mfr, eos],
[i-mfl,phoneme*, ps, syllable-type, eos, phoneme*, syllable-type, i-mfr, eos],
[i-mfl,phoneme*, syllable-type, eos, phoneme*, ps, syllable-type, i-mfr, eos]
n.

macro(ip, data_preparation o [bow,{ip-non-footed-syllable, ip-non-head-foot}*,
ip-head-foot, {ip—non-footed-syllable, ip-non-head-foot}#*, eow]).
macro (output,output-interpretive-parsing) .

This is found in ip.pl. The files stress-prod.pl and stress-ip.pl loads
all necessary further files, as well as add some information, so that the first
one can be used as the auxiliary file for production directed parsing, while the
second one for Robust Interpretive Parsing.
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Chapter 4

Results

4.1 Preliminary results on stress

For the first test I used Hungarian data: all of them had a primary stress on the
first syllable, and no secondary stress. (The four words are in the file data-hun).
The resulting FSA was:

gen oo (footbin xx footnonfinal xx main-left xx wfl xx nonfinal) oo (parse
xx iambic xx main-right xx wfr xx wsp)

As explained earlier, this is to be read in the following way: we use the oo
optimality operator to create the composition of the output of Gen with two
“complex constraints”. The first one is the summarizing of the violation marks
assigned by the constraints in the first stratum, while the second one is defined as
assigning as many violation marks as the sum of the violation marks assigned by
the constraints in the second stratum. This combination the constraints within
one stratum is realized by the xx operator.

In my second test I used nine Modern Hebrew data (data-hb2): seven of
them having the (primary) stress on the ultimate syllable, while two of them
had a penultimate stress (belonging to the “segolate” pattern). Here they are:

aL.marlH
oL.merlH

alL.nilL
eL.daL.berlH
telH.aL.vivliH
peL.taxH.tikH.valL
sanH.hedH.rin1H
meL.daL.belL.retH
selL.ferH

The par. c algorithm succeded in finding two rankings. The one correspond-
ing for the regular pattern is:

gen oo (footbin xx iambic xx main-right xx wfr xx nonfinal) oo (footnonfinal
xx main-left) oo (parse xx wfl xx wsp)
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While for the irregular pattern (the so-called geminates):

gen oo (footbin xx footnonfinal xx main-right xx wfr xx pssh) oo (wsp xx
iambic xx main-left xx nonfinal) oo (parse xx wfl)

Then T used 24 data taken from D. Gilbers & W. Jansen’s article (p. 73),
with Dicky Gilbers’s evaluation about the syllable-structure (personal commu-
nication):

ma2L.cal..rolL.nieL gor2H.gonH.zo1L.1aL,
a2Ll.necH.do1L.telL Mul2H.taL.tulL.liL
fo2L.noL.loL.gielL co2L.rresH.ponH.dent1S
in2H.diL.viL.dulL a2L.lekH.sanH.drijnlS
ho2L.ril..zonH.taallS Con2H.stanH.til..no1L.pelH
me2L.lanH.choL.liek1S ar2H.chiL..tecH.tuurlS
cal..deaulLs tal..bak1H

dicH.teelLL serH.vies1S

iL.deelL heL.laas1S

alL.buislS haL.bijt1S
o2L.noL.maL.toL.peelLL e2L.tyL.moL.loL.giellL

en2H.cyL.cloL.peL.dielL di2L.aL.lecH.toL.loog1S

I had to add one more constraint (PPSS) to the ones used by T&S (p.
54) that accounts for the behaviour of super-heavy syllables. In fact neither the
Hungarian nor the Hebrew data needed the supposition of super-heavy syllables,
so this constraint would stay unaffected. The PPSS constraint assigns one
violation mark to each super heavy syllable that does not bear a primary stress.

In the first step the par.c algorythm could successfully find one ranking that
matches 15 data out of the 24. (This hierarchy was found when already only
six data was taken into account, but then it turned out to match nine further
data.)

This hierarchy is:

Hx: gen oo (footbin xx wfl xx pssh) oo (main-right xx wfr) oo (nonfinal
xx main-left) oo (footnonfinal) oo (iambic xx wsp xx parse)

After having removed these fifteen data, a next FSA was found:

Hp: gen oo (footbin xx parse xx wsp xx main-right xx wfr xx wfl xx pssh)
oo (iambic xx main-left xx nonfinal) oo (footnonfinal)

This can explain four out of the still unexplained data, and three of the
previously already explained ones.
Remark that in fact the following hierarchy

Hc: gen oo (footbin xx footnonfinal xx parse xx wsSp xx iambic xx main-left
xx main-right xx wfr xx wfl xx nonfinal xx pssh)
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can also account for four data, but the H4 is a refinement of Hes, and
explains a larger set of data.

There are still five data that cannot be explained. After several trials, it
turned out that no hierarchy can be found for them even individually.

Here are the results, as evaluated with the check.c program:

data Hy Hp He Explained by
ma2L.cal..rolL.nieLh 3 0 1 Hx
gor2H.gonH.zol1L.laLL 3 0 1 Hyp
a2L.necH.dolL.teLl 3 0 0 Hap
mul2H.taL.tulL.liL 3 0 1 Hy
fo2L.noL.loL.gielL, 0 0 1 not explainable
co2L.rresH.ponH.dent1S 3 0 0 Hp
in2H.diL.viL.dulL 0 3 1 Hp
a2L.lekH.sanH.drijnlS 3 0 0 Hp
ho2L.riL.zonH.taal1lS 3 0 1 Hy
con2H.stanH.tiL.nolL.pelH 3 0 0 Hp
me2L.lanH.choL.liek1S 3 0 0 Hyp
ar2H.chiL.tecH.tuurl$S 3 0 1 Hp
caL.deaull 0 3 1 Hp
tal..bak1H 0 3 3 Hp
dicH.teelLL 0 0 0 not explainable
serH.vies1S 3 0 1 Ha
iL.deelL 0 3 1 Hp
heL.laas1S 3 3 3 all
al.buis1lS 3 3 3 all
haL.bijt1S 3 3 3 all
o2L.noL.maL.toL.peelLL 0 0 1 not explainable
e2L.tyL.moL.loL.gielLL 0 0 1 not explainable
en2H.cyL.cloL.peL.dielL 0 0 1 not explainable
di2L.aL.lecH.toL.looglS 3 0 0 Hap

0 - Not among outputs of production.

1 - Among outputs of production, but only because of the stratified nature of the hierarchy
(more outputs with different constraints assigning violation marks).

2 - More outputs, but all outputs are assigned the same constraint violations.

3 - Only output of production.

After having changed the weight of the last syllable in the five non-explainable
data from light to heavy, resulting in:
fo2L.noL.loL.gielH
dicH.teelH
o2L.noL.malL.toL.peelH
e2L.tyL.moL.loL.gie1H
en2H.cyL.cloL.peL.dielH
it was easy to find a hierarchy for them:

Hp: gen oo (parse xx wsp xx footbin xx pssh xx main-right xx wfr xx footnonfinal
xx wfl xx nonfinal) oo (main-left xx iambic)

Hg: gen oo (nonfinal xx wsp xx iambic xx main-left xx footbin xx main-right
xx wfr xx wfl xx pssh xx parse) oo (footnonfinal)

Hp: gen oo (footbin xx footnonfinal xx wsp xx main-right xx wfr xx wfl
xx nonfinal xx pssh) oo (iambic xx main-left) oo (parse)
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Hg: gen oo (footbin xx footnonfinal xx wsp xx iambic xx main-right xx

wfr xx wfl xx nonfinal xx pssh) oo (parse xx main-left)

Hp was found for fo2L.noL.loL.gielH, Hr was found for dicH.teelH, Hp

was found for o2L.noL.malL.toL.peelH and

for e2L..tyL.moL.loL.gielH, while Hg for en2H.cyL.cloL.pel..dielH.
Reevaluating all the data with these new hierarchies, and the new data with

the old ones:

data

Expl’d by

ma2L.cal..rolL.nielL
gor2H.gonH.zolL.laL
a2L.necH.dolL.teLl
mul2H.taL.tulL.liL
fo2L.noL.loL.gielH
co2L.rresH.ponH.dent1S
in2H.diL.viL.dulL
a2L.lekH.sanH.drijn1S
ho2L.riL.zonH.taallS
con2H.stanH.tiL.nolL.pelH
me2L.lanH.choL.liek1S
ar2H.chiL.tecH.tuur1S
caL.deaulL

taL.baklH

dicH.teelH

serH.vies1S

iL.deelL

heL.laas1S

al.buislS

haL.bijt1S
o2L.noL.malL.toL.peelH
e2L.tyL.moL.loL.gielH
en2H.cyL.cloL.peL.dielH
di2L.aL.lecH.toL.looglS

HFNRFRRFRI~I~TNRAERFEFOON WR R~ W =RFNDWRNDW

Number of words in total:

aOJOOOOJCOOJOOJOOOOJOOCOOJOJO@OOJCOOOCOE

\]OOOOMCOODCMOOOJOJOOOOOMOOOOOO&

»&OHHHQ@C@@»—A»—!»—AO&»—A»—!QO»—\O»—!O»—A»—AO>—t>—t0m

5000OWWWOC@OC}JOO&OOWOOOO&@OHwbm

OOOOOOWWWN@WW@OOOOOHOO»—‘OO»—‘tqm

;owwwwwwowowowoowooowwoww$

CﬂOOJHI—\OJCOOOP—‘HHW»—‘)—‘OOI—‘O)—‘O»—‘»—‘O»—‘»—‘(DE

This way, we have found a hierarchy for all data. Remark, that H4 and
Hp still are not able to explain the five data (I mean, after having changed
the syllable-type of their last syllable.) In fact Hg turns out to be superflous,
because the data that has produced it (en2H.cyL.cloL.peL.die1H) can also be
explained by Hp. There is no data that could be produced only by Hg.

The hierarchy explaining the biggest number of the data is H4: it models
15 out of 24, that is it explains more than half of it. As we shall prove it in the
next chapter, the best distribution is classing all of these data into the class of
Hy4. There are 9 data left. Hp can account for 5 out of these 9, while all the
other hierarchies only for a less number of them: Hp and Hg for 4, Hp and
H¢ for 2, while He only for 1. That is, the next class shall contain the 5 data
accounted for by Hrp. Then we have two equal possibilities for the remaining
4 data: either Hp accounts for 3 and Hg for 1, or just the opposite, Hg for 3
and Hp for 1.
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4.2 Constraints that cannot be formulated with
FSTs

We have mentioned that two out of the constraints used by T&S cannot be for-
mulated using Finite State Transducers. These are All-Feet-Left and All-Feet-
Right. The reason they cannot be formulated within Finite State technology
is that they may assign a number of violation marks that is quadratic in the
length of the word.

This is related to, but not a necessary consequence of their being gradient
constraints. Other constraints, such as Main-Left and Main-Right, that require
counting can be implemented on FSTs. In fact counting by Main-Left and
Main-Right could be circumvented by a single pass through the word: instead
of assigning the word or the head syllable as many violation marks as the number
of syllables intervening between the relevant foot edge and the relevant word
edge, we could assign one violation marks for each foot intervening between the
relevant foot edge and the relevand word edge. But in the case of All-Feet-Left
and All-Feet-Right one would need a number of pass through the word, first
marking each foot one-by-one, and then assigning a violation mark for each
foot intervening between the relevant edge and the marked foot. (This can be
approximated, as shown later.)

In order to prove in a mathematical way that these two constraints cannot
be formulated by FSTs, first we shall present a lemma, that is in fact a simple
consequence of the so-called pumping lemma.

Lemma: Let T be a functional Finite State Transducer, that is for any
input string o it produces at most one output 7T(c). Then there exists a linear
upper bound on the length of the output, i.e. there exists a positive integer
k such that for any input string o for which there exists an output 7'(o) the
following inequality holds:

| T(o) [<k|o]|

where | « | denotes the length of the string .

Proof:

A Finite State Transducer with an input alphabet A and an output alphabet
B can be seen as a Finite State Automaton over the alphabet X = (AU {e}) x
(BU{e})\ {¢,€}. A string (a1, b1)(az, bs)...(an, by,) accepted by the automaton
corresponds the the input-output pair (ajas...an,b1bs...b,) of the transducer,
with the e-s being simply deleted.

For a string f = (a1, b1)(az,b2)...(an, by) accepted by the automaton let us
call the first projection f; = ajas...a, the left-hand or input string of f, and let
the second projection f, = b1bs...by, be the right-hand or output string of f.

Now we will make use of a corollary of Ogden’s Iteration Lemma for Regular
Languages, a variation of the Pumping Lemma (Corollary 4.7 in Berstel [1979],
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p. 21). This claims that if L C X* is a regular language, and Y C X, then there
is an integer N > 1 such that for any f € L and for any factorization f = hgh’
with | g |[y> N, ! g admits a factorization g = aub such that (i) 0 <| u [y< N,
and (ii) hau*bh/ C L. ?

Let L be the language accepted by the FSA corresponding to the Finite
State Transducer T, as explained above. And let be Y = {€} x B C X. This
means that there exists a positive integer N, such that for any f € L and for any
factorization f = hgh': if | g |y > N, then g can be factorized such as g = aub,
| w|> 0 and hau*bh’ C L.

The case u € Y* would mean that some inputs of the transducer can generate
several (an infinite number of) outputs, since the elements of hau*bh’ would
correspond to the same input and to different outputs. Therefore the fact that
T is functional means that for any f € L and any factorization f = hgh/, if
| g |>] g [y> N then g contains at least one character from X \ 'Y (since its
substring u should contain one).

In other words: it is not possible to find a substring of more then N elements
of Y within any f € L. This means that the input (left-hand) string f; of f
does not contain a series of more than N consequtive e-s.

Remember the way we constructed our automaton from the transducer T:
the input string ¢ of the transducer is the non-e¢ substring of f;. We can thus
infer that

[ fI=l il (N+1) [ o

Making use of the fact that the output T'(o) of the transducer is the non-e
substring of the right-hand string f,, we can conclude:

| T(@) I<[ fol=I FIS(N+1)] o]

Thus we have proven our lemma.<{

The next step is to realize that All-Feet-Left and All-Feet-Right can assign
a number of violation marks that is quadratic in the length of the input. In
fact if the input consists for instance of n syllables, each of them parsed into a
separate foot, then the number of violation marks to be assigned to the word is
n(n —1)/2. Therefore no linear bound can be given (in function of the input’s
length) to the length of the ouput of the process assigning violation marks. But
this process should be functional, since assigning violation marks is a function.
Supposing we had a functional transducer realizing the All-Feet-Left or the All-
Feet-Right constraint, there would be an integer N such that the maximum
number of violation marks assigned would be N — 1 times the length of the
input (no deletion takes place in violation mark assignment). If we suppose
that ¢ is the maximum length of a syllable 3 we get the inequality:

L u |y refers to the number of occurences of elements of Y in the string wu.

2L’ appears in Berstel [1979] at this last point, but this should be a mistake.

3 Although such a supposition cannot be made in general, since stress assignment is inde-
pendent from the phonemes in the word, one could just delete the phonemic content of the
input, without altering the process. In such a case an upper limit can already be given.
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n(n —1)

L < (V- 1)n¢

It is possible to choose n great enough that this would not be true. As there
is no theoretical limit on the number of syllables in one word, we have proven
that no Finite State Transducers exist realizing All-Feet-Left and All-Feet-Right
in an ezact way.

But this does not mean that no approximation can be given. One can
suppose in real life languages, that the number of syllables (or even more the
number of feet) in one word is indeed bound.

Here I am giving an approximation for All-Feet-Right. The FST called
one_feet_right assignes a violation mark (M) to all syllables right to the foot
just being checked (marked by a C character). A step consists of marking the
first unchecked foot from the left by this C symbol, then running one_feet_right
and finally marking that foot as have been already ckecked (D). If we have a
bound n on the number of feet in a word, repeating this process n times would
practically result in a realization of All-Feet-Right.

macro(checking,’C’).
macro (checked, ’D’).
macro(one_feet_right (M),
replace([]:M, [checking, eos, ? *, eos], [1)).
macro (one_step (M),
replace([]:checking, [bow, (? -checking)*, fr], checked)
o one_feet_right (M)
o replace(checking:checked)).
macro(mark ot_constraint(all feet_right,M),
one_step(M) o one_step(M) o ... o one_step(M)
o replace(checked: []) ).

It is noteworthy that even three steps result in an FST that has 472 states.
This “explosion” in the number of the states show the inheritingly not Finite
State-likeness of the problem.

A similar procedure is possible for All-Feet-Left.
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Chapter 5

The structure of the lexicon

5.1 Introduction to the problem

As a result of our experiments we received a number of hierarchies H;, each of
them describing a subset L; of the lexicon:

(Hlel)a (H2a L2)7 seey (Hna Ln)

In an optimal case all elements of the lexicon are covered by at least one
subset L;, but there will be probably overlaps. The question is how to interpret
this results, what to do with them. Obviously we can eliminate a hierarchy
(like He for our Dutch data) that account for data that are accounted for by
others, too. But in a complicated situation, it is not obvious either which one
to eliminate, if there are more than one like this.

Then, how to distribute the words among the subsets? One approach would
be to let a word be associated to more than one hierarchies If we suppose that
only one hierarchy (one transducer) is built up (or: is active) in a given point in
time during production (either mentally or computationally speaking), then we
need to rebuild (reactivate) a new hierarchy each time that we want to produce
a word belonging to a different class from the class in which the previous word
belongs to. Rebuilding (reactivating) a new FST can be very expensive (building
new FSTs takes most of the CPU time of the learning algorithm). In this there
is an advantage in letting a word belong to more than one class, since this would
increase the probability of not having to build a new transducer for that word.

If we reject the possibility of a word belonging to more classes then we want
to find a partition of the lexicon into these disjunct classes. How to do that?
What are our criteria or priorities when doing this?

I can suggest three approaches. The first one follows the previous line of
reasoning and tries to minimalize the probability of having to rebuilt the trans-
ducer during the production of a list of words. The first steps towards this are
shown in the next section.
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A second approach would minimalize the storing capacities needed. A way
to do that would be to look for hierarchies that differ only minimally, so that
a few binary parameters would be enough to refer to the one or to the other of
them. This could lead a decision tree-like hierarchical structure of the lexicon.
The second section gives some initial speculations of mine in this field.

A third approach would look at the similarities of the words to be put into
one class. In the case of the Hebrew irregular pattern (the “segolates”) the
similarity of these words are shocking, and this is the reason why this minor
rule turns out to be productive for new words sharing the same pattern. This
approach would thus try to create classes that could then predict the class into
which new words would belong to.

5.2 Learning a multi-phonological lexicon

There are many signs that one should stop looking for a grammar or phonology
accounting for the whole of a given language. The old-new paradigm should be
rather to partition the lexicon into (disjunct?) classes, each of which can be
accounted for by one model. The point is to optimize this structure in some
way.

Supposing that the most expensive action is building a new hierarchy (any-
way, this is the case on computer simulations where building new transducers
takes most of the CPU time), the parameter to be optimized is:

a%—ka%—}—...—{—a%
N2

where a; is the number of the elements in class ¢ out of the n classes, and
N =aj; +as+...+ a, is the number of words in the lexicon. The reason for this
is that P is the probability that two neighbouring elements of an uncorrelated
sequence of words will belong to the same class, i.e. there is no need to change
the hierarchy (the active FST). !

The way to find the partition maximizing p is by maximizing the biggest a;s
(that is minimalizing the entropy). In other words one has to put all the elements
of the greatest subset, into the first partition. Then one has to check which
subset contains the most elements out of the remaining (non yet distributed)
lexical items, and put them into the second partition. Then this step has to be
repeated as long as there are undistributed elements.

Although this algorithm since to be obvious, it has to be proven mathemat-
ically. At the moment I can prove it only for the case when the biggest subset
contains more then half of elements, in each step. As this is the case for our
Dutch data, the use of this algorithm in that chapter seems to be correct.

P =

ISupposing that the words are distributed equally in the sequence. This approach can
be refined by taking into account word frequencies of the items belonging to a group. This
would minimalize the probability of rebuilding the transducer in real production tasks. But in
fact this is just redefining the a; parameters as being the sum of the frequencies of the words
belonging to that class, instead of being simply the number of the same words.
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But what happens if the biggest class contains less than half of the data?
Another question that one should raise: what happens if there are two classes
with the equal number of data, as it was the case for Dutch data? Do we need
to try out which one maximalizes P?

5.3 Further speculations about the structure of
the lexicon

This section is the beginning of a speculation that should leave to a method for
creating a decision tree for hierarchies, or some other ways for organizing the
hierarchies of a given language into a homogenious structure. The outcome may
be an algorithm that partition the data of the complex lexicon into a subset
whose storing place is minimal. Alternatively we could gain an alternative
learning algorithm, if we suppose that the hierarchies describing the different
classes are not random ones, but they differe from each other in a systematic
way, and therefore we could try a learning algorithm that uses this information
when searching for further hierarchies.

I had the idea to use a previous paper of mine (Biré & Hamp [2001]) on
Hebrew morphology to show this idea. That paper introduced binary param-
eters that would determine the ranking of the constraints. Each subset of the
lexicon could be associated with a different parameter setting, therefore with a
different hierarchy. But due to some problems for which my solutions were not
really conform to main-stream OT, I gave up trying to develop this idea into a
tree-like lexicon structure.

Restrictions on hierarchies will become a key term from now on. In fact a
restriction r is a statement on hierarchies, and represents the subset of hier-
archies (out of the set U of all possible fully ranked hierarchies defined by the
finite universal set C of constraints) for which the statement holds.

A primitive restriction is an ordered pair of constraints (¢; >> c¢z2), rep-
resenting the logical statement ’c; >> ¢’ on hierarchies. In other words, a
primitive restriction is a set of hierarchies for which this statement holds: the
set of hierarchies satisfying this statement. For each hierarchy h € U it can be
decided if h is an element of the set represented by a given primitive restriction
(using vague notions: h € r) or not.

1 is the zero-restriction, the set of hierarchies associated to it is H.

The set R of restrictionscan be defined as the following:

a. 1 €R.

b. all primitive restrictions are within R (if ¢; € bf C, ¢z € bf C, and ¢; # ¢z,
then (c; >> ¢3) € R);

c. if 1 and ry are elements of R, then r{ Ary € R;

d. if r{ and 79 are elements of R, then rq V ry € R.

The conjunction 1 A ro of two restrictions r; and 79 is the logical AND-
relation between the two statements, that is the intersection of the set repre-
sented by r; and of the set represented by 7. Similarly, the disjunction r1 V g
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of two restrictions is nothing but the logical OR-relation of the two statements,
i.e. the union of the two sets in question.

Furthermore, the negation of a primitive restriction r = (¢; >> ¢3) is the
primitive restriction r = (¢ >> ¢1), and the corresponding set of hierarchies is
the complementary set, since we speak of fully ranked hierarchies. If r € R is not
a primitive restriction, then its negation can also be defined using the standard
equations from Boolean algebra. In general it is obvious that restrictions form
a Boolean algebra. 1 is the one-element, while 0 = — 1 is the zero-element of
it. The latter is associated with the empty set.

The idea is now the following: the lexicon should be organized in a hierarchi-
cal structure. The classes of the lexicon are to be found at the leaves of the tree,
while each node represent a binary decision. This statement to be decided is
either a primitive restriction of the form “c; >> ¢3”, or a conjunction of them.
The tree being binary, one branch leaving will signify that the statement holds,
while the other means that it doesn’t. In other words, one part of the subset of
the lexicon below the node satisfies the statement, while the other part doesn’t.

To be more exact: each node of the element is associated with a so-called
inherited restriction and also — with the exception of the final nodes — with a
so-called decision statement. The inherited statment of each non-root node is
the conjunction of the mother’s inherited statement with the mother’s decision
statement, if the node in question is a left daughter, and with negation of the
mother’s decision statement, if the node in question is a right daughter. The
hierarchies describing the classes of the lexicon that are bellow the given node
are all members of the set represented by the inherited restriction of the given
statement. Furthermore, the inhereted restriction of a final node represents a
single hierarchy.

The goal woud be now the following: the structure of the lexicon should be
ideally the following:

1. The biggest possible rg is the root node’s inherited restriction, which is
supposed to be the conjunction of universal restrictions (cf. universal subhier-
archies in P&S chapter 9, T&S p. 47), and of language specific restrictions.

2. The root node’s decision statement is for a given c¢; € C:

r = /\CEC,C7£61 (Cl >> C)

3. For both daughters the decision statement is of a similar form, etc.
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Chapter 6

PhD Project Proposal

6.1 The complexity of the problem

If our goal is to build an FSA that generates Dutch stress using an OT approach,
and the solution is not trivial, we have recognize that the problem is very com-
plex. The lack of success is not necessary due to the learning algorithm, but
there are two extra factors, two undecided phonological points that are outside
the field of computational linguistics:

e Although the set of constraints are thought to be universal in theory, in
fact each and every phonological article proposes a different set of con-
straints, and there are usually even slight differences between the formu-
lation of the same constraints. T have used the set proposed by Tesar &
Smolensky, supposing that this set can be seen as a general consensus in
phonology, but I still had to add a constraint about super-heavy syllables.
A phonological way of going further would be to seek for a new set of
constraints, or for a best formulation of these. !

e One should recognize that even the data are not always clear. Some out of
the learning data given by Dicky Gilbers were not learnable, but changing
the definition of syllable types made them learnable. Based on this fact one
could argue for a new definition of light, heavy and super heavy syllables.
Others would reject this approach and would propose to look for different
constraints.

I think there is here a question of paradigm. Traditional (non-computational)
phonology has very different criteria from computational approaches. Learnabil-
ity is not a major factor for deciding either the universal set of stress constraints,

INotice that adding or removing constraints can critically affect the outcome. Even if I
demote a constraint to the very bottom of the hierarchy, it can filter out a candidate. Therefore
adding “superfluous” constraints can produce a situation where some of the learning data
become a “looser”, i.e. a candidate that will win for no ranking. (E.g. if that candidate has
been previously assigned exactly the same violations as another candidate.)
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or the definition of syllable types. These discussions are still in process, and a
computational linguists has to wait for a consensus about them, before trying
out his or her proposals for new algorithms. But because learnability issues can
still influence “traditional” phonology (e.g. through language acquisition) this
“22-catch” cannot be avoided.

Therefore I propose the following steps for my research.

6.2 An overview of constraints and syllable type
definitions used in current phonological lit-
erature

I should go through the relevant articles in ROA, gathering different definitions
of syllable types and sets of constraints, paying attention to the slight variations
of the same constraints. I do not want to enter phonological discussions, my
only point would be to try to set up a definition of syllable types, a definition
of constraints in used, and a set of universal constraints that best approximates
the ones used in current literature.

6.3 Formal properties of OT

See e.g. Samek-Lodovici [1999], and his lecture notes for ESSLLI 2002. The
main question here is how to identify loser candidates, that is candidates that
are optimal forms for no constraint ranking. Identifying these candidates (or
better: not generating them by Gen, this is the topic of Samek-Lodovici’s current
research, according to him) could help us in avoiding some of the failures of
the RIP/CD algorithm (¢f. T&S p. 71). What are the implications of these
investigations for us?

Further issues that are interesting topics in now-days researches in OT:
output-output-correspondence (cf. e.g. Burzio [1999], a widely used technique,
but problematic to Finite State approaches), stochastic OT (), bi-directional
OT (e.g. Jéger [2001a, b]), constraint conjunctions (e.g. Moreton & Smolensky
[2002]).

6.4 Further refinement of the current model

For example it should be proven that the actual constraints are exact, or the
level of approximation needed is to be calculated. (Cf. Gerdemann & van
Noord [2000]: a candidate with more violations than the minimal can survive
sometimes, if one does not apply permute marker.)

Furthermore there are a number of smaller problems to be solved. For in-
stance, based on “calculations” on paper, the hierarchy all >> WSP, FootNonFinal
should be a solution for the word dicH.teelL. The reason for that is maybe the
fact that some non-harmonic candidates are not filtered out at a given point,
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because there are no candidates having one violation mark less. Therefore the
optimality operator should be slightly redefined.

6.5 Learning algorithm using fully ranked hier-
archies

As explained, the partially ranked hierarchies by T&S are not always convincing,.
Therefore the case of using always fully ranked hierarchies during the learning
algorithm should be also checked.

6.6 Applying to MPI

A possible practical point of this research would be to apply the model on
parallel machines, and this would save computing time. The point that can
be parallelized is when we randomly distribute the data to parallel processes
that are looking for possible rankings. Actually this has been done by parallel
processes on my PC. Using High Performance Computing would make possible
to make experiments on a radically higher dataset.

6.7 Possible clusterings of the subsets of the lex-
icon

See chapter above about the possible structure of the lexicon. At this point
I still have just speculations about the possible ways to organize the lexicon.
But by the time I wish to tackle this problem, I hope to have gathered enough
experience and literature about the topic so that I will be able to achieve real
results.

6.8 Distribution of lexicon subsets in written
texts

I believe that it would be very useful to have a look at the way words associated
to different hierarchies are distributed in a pronounced or written text, i.e. to
observe the pattern of changing constraint hierarchies. Supposing that changing
a hierarchy (building a new FSA) is an extremely expensive operation (as is the
case on computers), the outcome of this investigation would motivate the choice
of the way we would cluster the lexicon subsets.
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Chapter 7

Schedule

7.1 Achievements in the first year (October 2001-
September 2002)

e Reading group in Machine Learning (presentation: December 13, 2001:
Tesar and Smolensky [2000], chapters 4-6., Jan. 17, 2002: Tesar and
Smolensky, [2000], chapters 7-8., Apr. 18, 2002: Support Vector Machines,
chapter 4).

e Participation in the meetings of the Language Acquisition Lab (by A. van
Hout).

e Dutch Courses, level 1 (February - May, 2002), level 2 (September - De-
cember, 2002).

e LOT Winter School (Leiden, January, 2002) and Summer School (Ni-
jmegen, June, 2002). Courses by S. Tagliamonte (Language Variation and
Change: Theory, Method and Analysis), G. Extra and D. Gorter (Compar-
ative Perspectives on Minority Languages in Europe), T. Rietveld and R.
van Hout (Statistics in language research: analysis of variance), P. Fikkert
(Acquiring phonology), O. Crasborn ( Cross-linguisitic perspectives on sign
language structure), D. Sandra (Psycholinguistics).

e Arnold Meijster (RC): MPI-course (High Performance Computing) (Dec.
11-12, 2001).

e ESSLLI Summer School, Trento, Italy (August 2002). Courses by V.
Samek-Lodovici (Formal Properties of Optimality Theory), K. van Deemter
and M. Stone (Formal Issues in Natural Language Generation), C. Martin-
Vide (Formal Language Theory: Classical and Nonclassical Machineries),
G. Huet and C. Rétoré (Survey of a few Fundamental Representation
Structure for Computational Linguistics),...
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Teaching the Tekstmanipulatie class (September-November, 2002).

Out of the 20 credits required by BCN, I have done: Dutch course, level 1
(3 points?), LOT, 6 courses (6 points?), ESSLLI, teaching assignment.

7.2

Plan for years 2-4

November - December, 2002

Solving the remaining problems with FSTs.
Investigations into the level of approximations needed.
Collecting articles for a reading group in the formal properties of OT.

Presenting at CLIN 2002 (November 2002): Learning Dutch Stress in
Optimality Theory using FSA Utilities.

January - June, 2003

Reading group in formal properties of OT.

An overview of constraints and syllable type definitions used in current
phonological literature.

Implementing the learning algorithm with fully ranked hierarchies.

Presenting EACL 2003 (April 2003): Some Preliminary Remarks on Vio-
lation Assignment and Further Issues in Finite State Optimality Theory:
The case of stress assignment.

LOT Winter and Summer schools (January and June, 2003).

BCN Poster Session (February 2003), BCN Orientation Course (March
2003), BCN Retreat (April 2003).

Dutch course, level 3 (February-May 2003).

July - December, 2003

Reviewing the learning algorithms in the light of theoretical issues.
Applying the learning algorithm to MPL.

Collecting literature on how does OT usually deal with exceptions.
ESSLLI 2003 (August 2003).

BCN Philosophy of Science and Mind course (November 2003).

Dutch course level 4 (September-December 2003).

36



e Course in “Presenting in English”.

e Participation at CLIN 2003.

January - June, 2004

e Working out the lexical model.
e LOT, Conference participation.
e Course in “Publishing in English”.

e Writing a first version of half of the dissertation.

July, 2004 - September, 2005
e Writing the thesis.
e LOT, CLIN, ESSLLI, Conference participation.
e BCN Poster Session (February 2005), BCN Retreat (April 2005).

Further interests

e Course in Phonetics.
e Course in statistical and stochastical methods.
e Course in PROLOG.

e Course in High Performance Computing (Nikolai Petkoff).

37



Chapter 8

References

E.L. Antworth [1990]: PC-KIMMO: a two-level processor for morpholog-
ical analysis, in: Number 16 in Occasional publications in the academic
computing, Summer Institute of Linguistics, Dallas.

e Jean Berstel [1979]: Transductions and Context-Free Languages, Teubner,
Stuttgart.

e Tamds Biré & Anna Hamp [2001]: Schwa and Roots: A Non-concatenative
Lexical Morpho-phonology, in: Selected Papers of Docsymp 6, the Grad-
uate Students’ Sixth Linguistics Symposium, April 28, 2001, Budapest.

e Gosse Bouma [2000]: A Finite State and Data-Oriented Method for Grapheme
to Phoneme Conversion,in: Proceedings of the first conference of the
North-American Chapter of the Association for Computational Linguis-
tics, pages 303-310, Somerset, NJ, 2000. Association for Computational
Linguistics.

e Luigi Burzio [1999]: Missing Players: Phonology and the Past-tense De-
bate, down-loadable at: http://hebb.cog. jhu.edu/index.cfm?urlpage=menu7&secx=1.

e Robert Frank & Giorgio Satta [1998]: Optimality theory and the compu-
tational complexity of constraint violability, Computational Linguistics,
24:307-315

e Dale Gerdemann, Gertjan van Noord [1999]: Transducers from Rewrite
Rules with Backreferences. EACL 99, Bergen Norway.

e Dale Gerdemann, Gertjan van Noord [2000]: Approximation and Exact-
ness in Finite State Optimality Theory, in: Jason Eisner, Lauri Karttunen,
Alain Thriault (editors), SIGPHON 2000, Finite State Phonology.

e Dicky Gilbers, Wouter Jansen [1996]: Klemtoon en Ritme in Optimality
Theory, in: TABU 26-2, p. 53-101.

38



Trevor Harley [2001]: The Psychology of Language, from data to theory,
2nd edition, Psychology Press, USA-Canada.

Gerhard Jéger [20017a]: Some Notes on the Formal Properties of Bidirec-
tional Optimality Theory, ROA 414-0900.

Gerhard Jager [20017b]: Gradient constraints in finite state OT: The uni-
directional and the bidirectional case, ROA 479-1101.

Marc Joanisse & Suzanne Curtin: Dutch Stress Acquisition: OT and Con-
nectionist Approaches, at http://citeseer.nj.nec.com/288300.html

R. Kaplan and M. Kay [1994]: Regular models of phonological rule sys-
tems, Computational Linguistics, vol. 20, no. 3, pp. 331-378.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette & Anne Schiller
[1996]: Regular expressions for language engineering, Natural Language
Engineering, 2 (4):305-328

Lauri Karttunen [1998]: The proper treatment of optimality theory in
computational phonology, in: Finite-state Methods in Natural Language
Processing, pp. 1-12, Ankara.

Lauri Karttune & Kenneth R. Beesley [2001]: A Short History of Two-
Level Morphology, presented at ESSLLI 2001: http://www.folli.org/
orhttp://www.folli.uva.nl/CD/2001/courses/20years/twol-history.html

Elliott Moreton & Paul Smolensky [2002]: Typological Consequences of
Local Constraint Conjunction, ROA 525-0602.

Alan Prince & Paul Smolensky [1993]: Optimality Theory, Constraint
Interaction in Generative Grammar, RuCCS-TR-2, ROA Version 8/2002.

Gertjan van Noord & Dale Gerdemann [1999]: An extendible regular ex-
pression compiler for finite-state approaches in natural language process-
ing, in: O. Boldt, H. Juergensen and L. Robbins (eds.): Workshop on
Implementing Automata, WIA99 Pre-Proceedings, Potsdam, Germany.

Gertjan van Noord [1997]: FSA Utilities: A toolbox to manipulate finite-
state automata. In: Darrell Raymond, Derick Wood and Sheng Yu (eds.):
Automata Implementation, pp. 87-108, Springer Verlag, Lecture Notes in
Computer Science 1260.

Gertjan van Noord [1999]: FSAG6 reference manual, The FSA Utilities
toolbox is available free of charge under Gnu General Public License at
http://www.let.rug.nl/ vannoord/Fsa/.

Vieri Samek-Lodovici, Alan Prince [1999]: Optima, draft 11/22/99. Dis-
tributed at ESSLLI 2002.

Bruce Tesar, Paul Smolensky [2000]: Learnability in Optimality Theory,
The MIT Press, Cambridge, MA, London, England.

39



